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Wertheim's integral equation theory for associating fluids is reformulated for the 
study of the connectedness properties of associating hard spheres with four 
bonding sites. The association interaction is described as a square-well saturable 
attraction between these sites. The connectedness version of the Ornstein- 
Zernike (OZ) integral equation is supplemented by the PY-like closure relation 
and solved analytically within an ideal network approximation in which the 
network is represented as resulting from the crossing of ideal polymer chains. 
The pair connectedness functions and the mean cluster size are calculated and 
discussed. The condition for the percolation transition and the analytical form 
of the percolation threshold are derived. The connection of the percolation with 
the gas-liquid phase transition is discussed. 

KEY WORDS: Percolation; association; integral equation; ideal network. 

1. I N T R O D U C T I O N  

Percolation concept is a subject common to many problems connected 
with the determination of macroscopic properties which are strongly 
affected by the appearing of an infinite cluster, tl) These proccesses include 
the sol-gel transition in polymerizing systems, t2) conductivity and trans- 
port phenomena in porous and disordered media, particle aggregation in 
colloids, 13~ microemulsions and suspensions. 

Systematical investigation of the continuum percolation within the 
integral equation theory has been initiated by Coniglio et aL, ~41 who have 
derived the connectedness analog of usual OZ integral equation. Based on 
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this the connectivity of the systems with central attractive potentials 
including permeable and adhesive spheres, ~5~ randomly centered and 
permeable spheres, ~s)  extended hard spheres, (9) hard core Yukawa 
fluids,~10) square-well fluids ~l) has been investigated. 

The percolation properties of the so-called associatifig fluids have been 
studied also. Clustering and gelation in dimerizing fluids have been dis- 
cussed in refs. 12, 13. In particular, the dimerizing sticky hard sphere model 
has been shown to be useful in a description of the percolation in miceUar 
microemulsions with dissolved protein) TM 14) Connectivity in chain-like 
fluids have been studied in refs. 15, 16 by means of RISM and also in 
ref. 17 within the Wertheim's associative approach, ttS-2t) The evidence of 
the percolation behavior in network-forming systems has been given in the 
works of Stanley, Teixeira et  al., ~22 24) where the molecular dynamics study 
of the ST2 model of water is discussed. 

The above studies have been concerned with the potential models con- 
sisting of two parts. First of them has been chosen to be an associating 
saturable interaction, responsible for a formation of finite size aggregates. 
The second part has been represented by a spherically symmetric (say, 
adhesive or square well) attraction responsible for the percolation. The 
association has been detected to cause a shift of the percolation threshold 
with respect to nonassociating system. 

The aim of the present paper is to study the clustering due to the 
associating potential only. This problem is different in principle from those 
mentioned above. In fact, we are going to examine how a growing cluster 
can be built up of monomeric omits due to covalent bonds. In particular, 
we consider the four bonding site model of associating fluids. Thermo- 
dynamic and structural properties of this model have been studied in 
refs. 25, 27. The site-site interaction in this case may cause the formation of 
network complexes. Our purpose is to study the conditions at which the 
network appears as an infinite cluster. For this aim we reformulate the 
Wertheim's integral equation theory and solve the connectivity Ornstein- 
Zernike (OZ) equation within the PY approximation. Similar scheme has 
been developed in ref. 17 for the analysis of the connectivity in polymer- 
izing fluids. In addition we adapt here an ideal network approximation ~27) 
in which the network is described as a tree-like structure where there is 
only single path of associative bonds between any pair of molecules. We 
obtain analytically the mean cluster size, the condition for the percolation 
threshold, and, finally, the pair connectedness functions for the model 
under consideration. We discuss also a relation between the gas-liquid 
transition and the percolation threshold. The liquid is shown to lie inside 
the percolation region. This allows us to conclude that the liquid state (for 
the model) results from the condensation of an infinite network. 
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2. PERCOLATION C O N C E P T  W I T H I N  THE 
M U L T I D E N S I T Y  F O R M A L I S M  

We consider the system of hard spheres of number density p with each 
sphere containing four embedded attractive sites, denoted as A, B, C, D. 
The hard core diameter is denoted as d. The sites are randomly located at 
the surface of each sphere and assumed to be independent of each other. 
This means that the bonded state of a given site does not affect the bonding 
at the other sites of the same molecule. Only A C, BC, AD and BD bonding 
between different molecules are allowed. For the following analysis we will 
follow the notations introduced by Wertheim. (19) The superscripts F or F' 
denote the sites C and D, the subscripts G or G' stand for the sites A and B. 
The lower symbol F denotes the state with two bonded A and B sites on 
the same sphere. The upper symbol F has similar meaning with respect to 
C and D sites. For the derivation of basic relations we suppose that the 
system is affected by a virtual one particle potential which will be taken 
as zero in actual calculations. The detailed analysis of the structural and 
thermodynamic properties of this model has been presented in our previous 
work.(27) 

The pair potential consists of the blocked and connectedness parts: 

U(1, 2)= U*(1, 2)+ U*(1, 2) (1) 

The connectedness part is the sum of association contributions 

U+(1,2)= ~ UGF(1,2)+ ~ uF(1 ,2 )  (2) 
G,F G , F  

where U*(1,2) is the blocked part which is not responsible for the 
clusterization and represents the interaction of the molecules not connected 
into a cluster, it is modelled by the hard sphere potential, uGF(1, 2) denotes 
the potential for a short-ranged and highly directional attractive force 
between site G on molecule 1 and site F on molecule 2. The attraction 
between site F of molecule 1 and site G of molecule 2 is described by the 
value u F (  1, 2). The association potential is given in the square well form: 

2)= G ,  (3) UJ(1,2)=UF(1 ' {o_E F" x r <xc 

Here x r is the distance between the sites F and G of the molecules 1 and 2, 
E~ is the depth and xc is the width of the potential well. 

The Mayer function can be expressed as: 

f(1, 2)= f*(1, 2) + f*(I,  2) (4) 
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with the connectedness part being defined as 

f*(1, 2) = e*(1, 2) o~. [ foE(l, 2)+  f F ( 1 ,  2) 

G,~ ]1 + 1-[ If?(1, 2 )+  f~i(1, 2) (5) 
i, g c = G ' , F '  

Here, e*(1, 2)=exp{ -flU*(1,  2)} and faF(1,  2)=exp{ - f l U J ( 1 ,  2)} - 1. 
The last term in the bracket of equation (5) represents the multiple 
bonding between the molecules labeled as 1 and 2. For the short-ranged 
part of the potential, this term will be neglected due to the steric saturation 
condition which imposes a restriction on the association potential. Note 
that the connectedness Mayer function f*(1, 2) is defined here to be 
different from the exponential of U*(1, 2), as it was proposed in. ~4' 5) A divi- 
sion of the Mayer function onto the blocked and connectedness parts is, to 
some extent, arbitrary. The only restriction is that the equation (4) is 
satisfied consistently with the division (1) of the potential. The above 
choice for f*(1, 2) is motivated by our purpose to reduce the percolation 
problem to the starting point of the association theory. According to the 
multidensity formalism developed by Wertheim, ~9) the pair correlation 
functions are described by the associative OZ integral equation: 

hTJ(1, 2) = c~f(1, 2) + Z ,  ~fd(3)c7./'(1,3) or" Y-':, ,,,(3) h~:;fj(3, 2 ) , .  (6) 

Here, the indexes {i, j, l, m} and {~, fl, Y, e} are assigned the values 0, G, F 
and 0, F, F respectively. 

For the analysis of the connectivity properties we extract from 
each correlation function the subset of graphs which contain at least one 
unbroken path o f f  F bonds between the root points. 

hi, ) (1, 2) = hTJ*(1, 2) + h2)/~*(1, 2), 

c~J(1, 2) = c~:F(1, 2) + c2;y*(1, 2) 
(7) 

The connectedness pair and direct correlation functions satisfy the OZ 
integral equation 

h~J*(1,2) cT. 'F(1,2)+y'  Z f d ( 3 ) c ~ ' F ( 1 ,  F - - y - - t :  h~(~*(3,2) = ,. , 3 ) a t _  , . . . .  (3) ,. (8) 
L in  y, f; 
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For the sake of clarity it is useful to rearrange equation (8) in the matrix 
form: 

hi(l ,  2) = c*(1, 2) + f d(3) c*(1, 3) r h*(3, 2) (9) 

where the matrices are defined as follows: 

e*(1,2) = 

eo*  
h*(1,2)= 

~*oo ~oA ~o t, ~*~7 

~o ~L ~*~ ~I ~,~, ~,~ ~,~ ~j 

(lO) 

The density matrix is of usual fOrlTl:  (27) 

#8 6 #o 

~=aA#O 6 X] 
ao 0 6 

( l l )  

These matrices are obtained from those written in usual equation (6) 
by excluding the correlation functions inconsistent with the connectedness 
condition. For instance, the functions h ~176162 2) or h~162 2) vanish since " 0 0  ' ,~ '  " ' 0 F  ' , ~  
the labeled point 1 has not an associative bond. The submatrices are 
defined in a similar manner. (27) In particular, we have 

0 0 0 0 7 
Co0 COO ] Uoo(1,2)= 0 C~o ct ('D, _or, 

D/~" 0 c~'t, CO O-DDt Co0 I 
0 -l'Ct -l'Dt - IT t  l 

Coo Coo Coo d 
(12) 

0 0 0 0 ] 

/;o,o(1,2) = 0 h~o c* h~o D* h or* 

0 h~o 5. h~o"* h,~r,/ ' " '00  [ 
0 bFC* h FD* b r r * l  

"*oo " oo _1 
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~a,(1, 2 )=  

fi~a,(1, 2)= 

cOOt coDt 1 GG' CGG' GG" raG'  
! 

r C D t  CC~ -CDt CI~]  
~GG' eGG' CGG' eGG' 
~DOt ~DCt ~DDt DFt| 
CGG, CGG, CGG, CGG, 

I 
IR)t cFCt  pFDt - F F t l  

EGG' GG' ~oa '  CGG'J 

o~ ~ hOOt hOOt h O D t  haG,  
"'GG' GG' "~GG' 
b c~t h cct  b CDt b Crt I 
"GG' GG' "'GG' "~GG' [ 
hoot h Dct b~Dt h~a~| 
"GG" aa'  "'GG' 

i 
b J o t  hec~ h r D t  h r r t l  
"~GG" "~GG" " *GG'  "*GG'~ 

(13) 

The density submatrices are: 

@r =  ocl ij oo oij tTF tTF ~ a  = , ' "  

c o 0 ' ~ ~ o  0 O" F O" F 

o 0 0 a ~ 0 0 0" F 

(14) 

All the matrices required could be obtained within the recipe described 
above by the appropriate substitution of the indices. Here, the values a{ are 
the combinations of the partial densities p~ which account for a bonded 
state of the sites. 

i 

a~'(1)= ~ ~ ~(1)  (15) 
j=o #=o 

Equation (8) should be supplemented by a closure relation. We propose 
the following PY-like closure: 

c~flt(1, 2 )= f* (1 ,  2) ~.#t Yi,/ (1, 2) 

+ e*(t, 2) ~ [ fF(1 ,  2) :,,j-a,'=-F'etl, 2)+faF(1,2):~--a"='~ : F~I, , 2)] 
F,G (16) 

where the connectedness cavity correlation function y~..flt( 1, 2) is defined by 

g~,)#*(1, 2) = h~J*(1, 2) = e*(1, 2) y~)#*( 1, 2) 

+ e*(1, 2 ) ~  [fF(1, 2) :,,j--o:--F'#(1,, 2)+  f6V(1, 2) :,--a,j"~'#--rtl,, 2)] 

g.a (17) 
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F 1 Here the singular, i.e. including the fo (  , 2), part describes the direct 
correlation between two points in the same cluster, while the regular part 
corresponds to the indirect correlation. We thus see that the relations 
(8)-(17) do not form a closed set since the connectedness functions are 
expressed through the partial functions ~ '8 g,.'j (1, 2). A solution of the OZ 
equation (6) is, therefore, required. 

The total connectedness correlation function is the following super- 
position of the partial functions: 

O(1) g*(1, 2) Q(2)=~ ~ ~(1) ,51"~176 j'8'[1,, 2) a~(2) 
i, j oc, f l  

(18) 

The most important measure of the connectedness is the mean cluster 
size S given by 

S = I + ~  dld2g*(1,2)  (19) 

where V is the sample volume. As the percolation transition is approached 
S increases and becomes infinite at the percolation threshold. 

3. THE IDEAL N E T W O R K  A P P R O X I M A T I O N  

In the previous section we have developed a general scheme for 
investigation of the connectivity properties within the association concept. 
The model under consideration can be used for a description of linear 
polymers, symmetrical and nonsymmetrical networks. The network may 
consist of very complicated aggregates (e.g. linear branches, loops, crossing 
rings, etc.) which require more and more refined description. As a first step 
we neglect the formation of ring-like structures and describe the network as 
a singly connected structure (like the Cayley tree). This is the ideal network 
approximation ~27) which is based on following assumptions. We neglect all 
the graphs in Q(l) which contain the intramolecular (s-mer) subgraphs 
corresponding to s >1 3. This restriction is valid for each G F  pair of bonded 
sites and corresponds to the dimer approximation for each of G F  bonds. In 
other words, we assume that only one bond at any association site is 
allowed. This means that the association potential (3) is regarded to be 
short ranged enough to involve the steric saturation condition. In addition 
we take into account the possibility of only single bonding between the 
molecules. Thus, we neglect any diagrammatic series in 0(1) with the 
multiple bonded labeled point included into a ring graph. Those statements 
result in the following relation amongst the partial densities 
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af(1) a~.(1) ~~ 
ar(1 ) - a f ( 1 ) - a o ( 1 ) = m r _ c ( 1 )  (20) 

~I : (1 )_~r (1 )  ~ r (1 )=m/"  F(1 ) (211 
~f~(1) ~F(1) J ( 1 )  

As we have discussed earlier 127~ the values rn~(1) and mF(1) can be 
identified with characteristics of association in a labeled point, but cannot 
be regarded to describe the size of the aggregates. This is in contrast to the 
two site polymer chains case ~31) where m is the mean chain length. 

Physically, our system can be viewed as that consisting of cross-like 
aggregates with each one being formed by the branches crossing at a 
common molecule. In our case we neglect the part of the intramolecular 
correlation responsible for the formation of the ring-like complexes with 
respect to all GF pairs of the sites. Thus, the network may consist of 
crossing polymer chains built along each of A C, AD, BC, BD directions, 
with each polymer branch being described within the ideal chain approxi- 
mation. ~3~ It is important that the structure is tree-like, i.e. there is no 
selfcrossing of the branches. Any pair of molecules in such a network is 
assumed to remain singly connected with changing density and association. 

The relation amongst the densities can also be represented in terms of 
the fractions Xa(1) and XF(1) of the molecules not bonded at sites G and 
F respectively: 

f oo f a  ( , 2) ~(2) xF(2) 1 XG(I)+XG(1) 2 d(2) g00(1,2) F1 = (22) 
F 

X F ( 1 ) + X F ( 1 ) ~ , I d ( 2 ) g ~ 1 7 6  (23) 
G 

Here ~(1) Xa(1) r = a t _ 6 ( 1 )  and Q(1)xF(1)=cyr-F(1) .  We note that the 
above relations amongst the densities are identical to those obtained in the 
framework of thermodynamic perturbation theory. ~19' 25.26) In the case of 
energetically equivalent sites (i.e xF( 1 ) = Xa( 1 ) = X A(1) ) the relations (22), 
(23) allow one to define Z,,, the fractions of the molecules bonded at n 
sites125, 26) 

Zo(1) = X4(1) (24) 

Z,(1) = 4X3(1)[ 1 - XA(1)] (25) 

Z2(1) = 6X2(1)[ 1 - XA(1)] z (26) 

Z3(1) = 4XA(1)[ 1 -- XA(1)] 3 (27) 

2%(1) = [1 -- XA(1)] 4 (28) 
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The average member of bonds nb per molecule can be calculated as: 1241 

4 

nh(1)= ~, kzk(i)=4[1-XA(1)] (29) 
k = l  

The connectivity OZ equation (8) can also be simplified, since the only 
functions 1,0F't1 2) or hF~ 2) and /,oo, FF' '~ ~ ,  0a ~ , "C~' or ho0 (1, 2) survive within the 
ideal network approximation. In the case of equivalent sites we have two 

�9 (/a0F* hl"Dt~ and the regular h~ = {h ~176 lqFF't~ fixations: the singular h~ = t,oc~0 -o~ "~GG" "~00 J" 

Then the connectivity OZ equation can be reduced to the following lower 
dimension matrix form 

h~i(1,2) = .  c,./(* 1, 2)+~Id3c*~:(1,3)at,.(S)h*.,/(3,2) 
1. m 

where the matrices are defined as 

1 E' t Lh; c, 

and a2 = pX~. 

(30) 

C,~ ' t~= _262 4a2J (31) 

The PY-like closure relation (16) takes the form 

c~(1, 2) = f * ( 1 ,  2) y.~(1, 2) + e*(1, 2)[f~,,(1, 2) - oo,. yoot 1, 2)] (32) 

c~(1, 2 ) =  f * ( l ,  2) y~*(1, 2) (33) 

where y.,*.( 1, 2) and y~*( 1, 2) are defined from 

g~(1, 2) = e*(1, 2) y.,*.(1, 2) + e*(1, 2)[f~,(1, 2) y~176 2)] (34) 

g~*(1, 2 ) =  e*(1, 2) y,*.(1, 2) (35) 

Here, f,.,.( 1, 2) F 1 = f a  ( , 2 ) = f g a ( 1 ,  2). The total connectedness function is 
the following combination of the regular and singular parts: 

g*(1, 2 ) =  8XA(1 ) XA(Z)[g~(1, 2) + g~(1, 2)] (36) 

4. STICKY LIMIT AND FACTORIZATION 

The scheme described above is applicable to a study of the connec- 
tivity properties of an inhomogeneous system with the strongly directional 
associative potential. We shall consider a spatially homogeneous system 
and assume that the pair quantities depend on the distance r between the 
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centres of two molecules and on their orientations. The one-particle 
densities are independent of the position of a given molecule. Since the sites 
G, F are assumed to be randomly located on the surface of each molecule, 
there is no restriction on the orientation of the sites. Therefore we consider 
the orientation averaged values for the association: 

faF(r)=~--5 ; faF(1,2)dO)l, ad~,,F&O2, ad~O2, F (37) 

w h e r e  (L)I, G and o9~, F denote the orientation of the sites G and F of 
molecule 1 and f2 is the normalization constant. Here, the integration over 
the orientations of two molecules is equivalent to the integration over the 
sites orientation, since the sites are assumed to be independent of each 
other. We note that the procedure of the orientation averaging eliminate 
the angular dependence of the pairwise quantities, but the steric incom- 
patibility does reflect the strongly directional character of the associative 
interaction. 

To provide an analytical treatment of the present model we follow 
Baxter ~36) and substitute the square-well attractive potential by its limiting 
case: infinitely narrow and infinitely deep potential under the constraint 
that the second virial coefficient for the association potential is kept 
constant. 

In this limit the Mayer function (5) is given by 

fGF(r) = f r ~ ( r )  = K ~  6(r -- d)  (38) 

where K F are the parameters for the strength of association. Note, 
however, that the above substitution does not mean a direct replacement 
of association potential by a spherically symmetric sticky potential. We just 
replace the square-well site-site attraction by a 6-like one. The highly direc- 
tional nature of the association is reflected by the bonded state indices 
which obey the steric saturation condition. The model is, therefore, dif- 
ferent from that of Baxter, ~36~ even when orientation averaged quantities 
are involved into consideration. 

As is already mentioned we consider here a symmetrical network with 
equivalent sites (i.e. K~ = K). Thus, the theory proposed is independent, of 
the sites displacement and on the angular limit of their bonding, if 
described in terms of K F parameters. The only number of sites in a 
molecule plays a role in this case. It is also worth noting that such an 
approximation eliminates any temperature dependence since the direct con- 
nection with the square well potential (3) is broken. In order to recover the 
temperature dependence we should interrelate the values K F with the 
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square well parameters E F of the initial potential. Within the second virial 
coefficient approximation the relationship required is given by ref. 29 

~ K~= ~ A~[exp{flE~} - I ] = A  Iexp {~----~)-I ] 
F , G  F , G  

(39) 

The value T* = l/B* is the dimensionless measure of temperature. The con- 
stant A ~ arises after the averaging over orientations. This value depends on 
the displacement of the sites inside the molecule and also on the angular 
limit for the site-site bonding. For the case of water-like tetrahedral sym- 
metry A F is analytically calculated. 133'25) We, therefore, conclude that the 
temperature properties of a fluid with arbitrary geometry of the sites 
displacement could be recovered through the above scheme, but with the 
precision of the second virial coefficient. It was shown 128) that such an 
approximation is reasonable for a quantitative description at not too low 
temperatures. In particular, the relation (39) is shown to be appropriate for 
a description of density profiles and adsorption isotherms for the model in 
contact with a hard wall. As follows from a comparison with computer 
simulation data, t26) Eq. (39) is applicable at any T* for high densities, 
but becomes only qualitatively correct with decreasing density and tem- 
perature. 

The expressions for the partial densities within the sticky limit are 
derived in refs. 25, 27. In particular, the XA is defined by 

XA = x/1 + 32~zKY~176 p -- 1 
16rtKy~176 d) p 

(40) 

where y~176 is the contact value of the cavity correlation function for 
nonbonded molecules. 

The OZ-like equation (30) together with the PY-like closure condi- 
tions (32), (33) and relation between the densities form a closed set of 
equations to be solved. The method proposed for its solution is based upon 
Wertheim-Baxter (WB) factorization technique, ~35"36) which allows one 
to express the connectivity functions through the auxiliary factorizing 
q-functions. 

l 

rh~.(r) = - [q~(r)]' + 2n ~ f0 q~,(t) ankh~j(lr- t[ )(r - t) dt (41) 
nk 

rc~(r) = -- [q~(r)]' + 2n E Orr q~i(t) a"kq~j(r + t) dt (42) 
nk 
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where the prime denotes the differentiation with respect to r. The auxiliary 
WB-factor functions within the PY approximation have the property that 

q~.=0, for r < 0  and r > d  (43) 

The q-functions at 0 < r < d  can be obtained now from Eq.(41) 
utilizing the relations (34) and (35) within the limit (38). As result we get 

q~.(r)=~ " ~176 (44) OijltYoot ) 

5. RESULTS AND DISCUSSION 

The mean cluster size for a spatially homogeneous system is given by 

S =  1 + p f dr g*(r) = 1 + p lim ~*(k) (45) 
J k ~ 0  

where ~t(k) denotes the Fourier transform of gt(r). Calculating the partial 
Fourier transforms ~ ( k )  from equation (30) we get the total ~*(k) in terms 
of partial ~.(k). Then the mean cluster size can be expressed through the 
q-functions as 

S =  1 +SpX~  lim { [(q(k) �9 o �9 q T ( - - k ) ) - ' - - 6 ] 0  o 
k ~ 0  

+ [ (q(k) �9 6 �9 q'r( _ k ) ) - ~ - 6 ]  ,o} (46) 

where the Fourier transform is defined as 

q;(k) = [ 6 - '  ]0 . -  2~ q;.(r) exp ( - ik r )  dr (47) 

Performing the above calculation we get 

32~pX~ Ky~176 d)(1 - 6~pX~ Kyoo( d) 
S =  1 + (48) 

(1 - 127rp X2A Ky~176 d) ) e 

The mean cluster size as a function of density is plotted in Fig. la. one can 
see that S has a singularity point ~/p(t/= ~rp d3/6) which depends on the 
temperature: 

3q 
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(a) In S as a function of density at different fl*://* = 7 (solid), fl* = 8 (long dashed), 
fl*= 9 (short dashed) (b) In S as a function of/~* at different r/. 

Near the singularity the expression (48) can be rearranged to the following 
asymptotic form Soc(~/ -  ~/p)-Y. We thus conclude that the critical expo- 
nent 7 describing the singularity in S is equal 2. Note that the same value 
of 7 is obtained for other potential models of percolation. ~5 9, 12 16) As is 
seen at the Fig. 1 b the S increases with decreasing temperature. The inverse 
temperature fit* of the percolation transition diminishes with increasing 
density since the mean cluster size increases with ~/. 

The mean cluster size can also be expressed in terms of X~ as 

4(4 + XA - 2X 2) 
S =  3(1 - 6XA + 9X 2) (49) 

The above expression derived within the percolation theory is different 
from that obtained by Ghonasgi and Chapman ~25~ on the basis of the 
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thermodynamic perturbation theory (TPT) ignoring the branched 
polymers 

3X 3 - 3X 2 + 1 
s -  x4(1  _ + x ] )  (50) 

Our result for S is also different from the one obtained by Chapman 
eta/. (3~ under the constraint that the rings are ignored 

1 
S =  (51) 

2XA- 1 

The correspondent curves are depicted in Fig. 2. As is seen, the result of 
(50) (the long dashed curve) is in excellent agreement with the MC data for 
high XA. This is due to the use of TPT which is correct at high tem- 
peratures (i.e. when XA ~ 1 ). Our result (49) overestimates the cluster size 
at intermediate XA but coincides with (50) at high XA. This is due to the 
PY approximation used for calculation of S. Nevertheless, equation (50) 
predicts S ~ ~ when XA ~ 0. i.e. at zero temperature (as is depicted in 
Fig. 3), while (49) gives the percolation transition at finite temperatures. 
The prediction of (51) (the short dashed line) exhibits a singularity at 
XA = 1/2 but S is not defined for XA < 1/2. Therefore, both equations (49) 
and (51) predict the percolation threshold at finite temperatures. In order 
to determine which of these predictions is correct, computer simulations, 
carried out at low temperatures, are required. Note in addition that the 
region where XA < 1/3 corresponds in our case to the percolating half-plane 
(see Fig. 4a). The cluster size is infinite for this region and predictions of 
Eq. (49) are, therefore, unphysical for XA < 1/3. The latter fact is due to the 
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Fig. 2. Mean cluster size as a function of XA : the present theory (solid), the result of Eq. (50) 
(long dashed), the result of Eq. (51 ) (short dashed), the MC data of ref. 25 (points). 
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Fig. 3. In S as a function of XA near the threshold: present theory (solid), the result of 
Eq. (50) (dotted solid). The dashed line marks the percolation threshold. 

ideal network approximation which is only qualitatively correct at low 
temperatures i.e. in the region where XA is low. Physically, this means that 
the network, in our case, is described to remain only singly connected at 
any temperature. This approximation may become inadequate at low 
temperatures when the associative bonds cause the formation of additional 
connectivity pathes. 

The percolation threshold is determined by analysing the conditions 
for the divergence of S. It is seen that S ~ ~ when X~ -~ 1/3. Analysis of 
this condition allows us to obtain the percolation curve and to define the 
percolating and non-percolating regions. The percolation and spinodal ~27) 
curves are given in Fig. 4a. 

As follows from Fig. 4a the percolation temperature T* increases with 
increasing density. We observe that the region of "normal" liquid states is 
inside the percolating region. This fact allows us to conclude that a liquid 
appears in the model as an infinite network. The conclusion is consistent 
with those drawn for the lattice models ~22 247 and also within the primitive 
model of water. ~33) In particular, we can state that the liquid phase occures 
when an infinite network is modified with decreasing temperature or 
increasing density. The percolation and spinodal curves do not meet at 
critical point. This result is in agreement with those obtained for spherically 
symmetric attraction models. ~5-7) 

It worth noting that the system is thermodynamically stable, since the 
Helmholtz free energy ~9' 25) remains finite as XA changes from 1 to 0 with 
decreasing temperature. In this way the free energy changes from that of 
hard sphere fluid to that of a four-fold coordinated network. This is in 
contrast to the Baxter's model, which is shown ~34) to be thermodynamically 
unstable since the adhesive singular potential leads to the unsaturable 
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Fig. 4. (a) The spinodal (dashed) and percolation (solid) curves obtained within the ideal 
network approximation. (b) In S(k = 0) as a function of density for different K: (1) k = 6; (2) 
K =  7.2; (3) k = 7.4; (4) k = 7.692 (critical); (5) K =  7.8 (supercritical). (c) the average number  
of bonds per molecule, calculated along the spinodal curve, as a function of/~*. 
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clustering. In our case the association is saturable and the clusters grow 
keeping the average member of bonds per molecule nb<~4. Another 
evidence of thermodynamical stability is that the range of instability can be 
properly determined. This is illustrated by analysis of the isothermal com- 
pressibility Xr, determined in ref. 27 in terms of k --* 0 limit of the structure 
factor S(k). In Fig. 4b a plot of In S(k = 0) vs ~/ is shown. The range of 
instability is shown in dashed curve. In the case of Baxter's model there is 
no real solution in this place and the spinodal curve is obtained as a 
boundary at which the solutions become complex. 

The average member of bonds per molecule given by Eq. (29) is 
n~=2.67 at the transition. This value is confined between nh= 1.53 
(obtained for the bond percolation within the ST2 model of water ~24~) and 
nb=3.18 (obtained for the percolation of four-fold patches). ~24~ The 
fractions of molecules bonded at n sites are 

Z0 = 0.012, Z] = 0.097, Z2 = 0.29, Z3 = 0.39, Z4 = 0.19 

at the threshold. We thus see that the network consists mainly of two- and 
three-fold coordinated molecules at the percolation transition. We note 
that the percolation threshold obtained here (XA = 1/3) is higher than 
p = 1/3 detected by Kolafa and Nezbeda (32~ for primitive model of water 
(XA corresponds to 1 - p  in their notations). This is due to the fact that the 
threshold in ref. 32 is determined within the Cayley tree approximation 
with p being a random variable. In our case the structure is similar to 
the Cayley tree, but includes additional backbones which are irrelevant to 
the connectivity. The percolation threshold is, therefore, higher then at the 
Cayley tree. 

We have calculated the value of nb as a function of inverse temperature 
fl* along the spinodal curve, this plot is given in Fig. 4b. It is seen that the 
average member of bonds per molecule nh ~3.05 at the critical point. 
Therefore, the condensation of a network fluid corresponds to increasing nb 
from nb = 2.67 to nb= 3.05. One can conclude also that along the spinodal 
n~ increases with decreasing temperature at the liquid subbranch. Along the 
gaseous subbranch nb decreases with decreasing temperature. In other 
words, a restriction on nb is required in order to omit the gas-liquid 
coexistence region. 

To calculate the connectivity correlation functions we use the Perram's 
iterative procedure. (3v~ As a starting point, the contact values h~(d +) are 
needed. They are derived from Eq. (41) after putting r = d 

h~(d +)=4npX][Yoo(d)K] 2 (6~+ 1) (52) 

822/88/5-6-23 
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Fig. 5. Pair connectedness function at r /= 0.08 for different values of fl*. 

The total contact value h*(d +) given by 

~ = [ 1 - X ~ ] 2 4 ~  (53) 

describes the contact probability of two molecules in the same cluster. Note 
that ht(d +) is inversly proportional to the density r/ which indicate the 
increasing of the intracluster correlation at low densities. It is seen also that 
the contact probability at a given density is highest at XA = 0, i.e. when the 
system consists mainly of highly coordinated molecules. We conclude, 
therefore, that at the percolation threshold (XA = 1/3) the contact prob- 
ability is not maximal, which is consistent with n~ = 2.67 for an infinite 
cluster. 

The connectivity correlation functions for r/= 0.08 at verious fl* are 
plotted in Fig. 5. One can observe how h*(r) becomes increasingly long 
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Fig. 6. Pair connectedness function at fl* = 6 for different values of v/. 
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ranged as the percolation threshold is approached. As follows from the 
Fig. 6, this tendency remains unchanged for a fixed temperature f l*= 6 
with r/increasing up to the threshold. As expected all the curves decrease 
as r is increased and are discontinuous at r = 2d. This implies that the 
excluded-volume interaction between the particles belonging to the same 
cluster is not prominant. 

6. CONCLUSION 

In this paper we reformulate the Wertheim's integral equation theory 
in order to study the connectivity properties of a four bonding sites fluid. 
We adapt the ideal network approximation which describes the network as 
an infinite cluster with only single path of associative bonds between any 
pair of molecules. We calculate the mean cluster size and pair connected- 
ness functions within the PY approximation from the OZ connectivity 
integral equation. It is shown that the mean cluster size increases with 
increasing density as well as with decreasing temperature and become 
infinite as the percolation threshold is approached. Based on this we define 
the percolation curve and percolating region of temperature and density. 
The threshold is displayed to be higher than at the Cayley tree, since the 
network in our case is a Cayley tree with additional deadlock branches. It 
is shown that a region of "normal" liquid states is inside the percolation 
region if both are detected within the ideal network approximation. The 
pair connectedness functions are detected to become increasingly long 
ranged as the percolation threshold is approached. 
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